The covalent modification and regulation of TLR8 in HEK-293 cells stimulated with imidazoquinoline agonists.
نویسندگان
چکیده
The mammalian TLRs (Toll-like receptors) mediate the rapid initial immune response to pathogens through recognition of pathogen-associated molecular patterns. The pathogen pattern to which TLR8 responds is ssRNA (single-stranded RNA) commonly associated with ssRNA viruses. TLR8 also responds to small, purine-like molecules including the imidazoquinoline IRMs (immune-response modifiers). The IRMs include molecules that selectively activate TLR7, selectively activate TLR8 or non-selectively activate both TLR7 and TLR8. Using HEK-293 cells (human embryonic kidney cells) stably expressing an NF-kappaB (nuclear factor kappaB)/luciferase promoter-reporter system as a model system, we have examined the regulation of TLR8 using the non-selective TLR7/8 agonist, 3M-003. Using conservative tyrosine to phenylalanine site-directed mutation, we show that of the 13 tyrosine residues resident in the cytosolic domain of TLR8, only three appear to be critical to TLR8 signalling. Two of these, Tyr898 and Tyr904, reside in the Box 1 motif and the third, Tyr1048, lies in a YXXM putative p85-binding motif. TLR8 is tyrosine-phosphorylated following 3M-003 treatment and TLR8 signalling is inhibited by tyrosine kinase inhibitors. Treatment with 3M-003 results in the association of the p85 regulatory subunit of PI3K (phosphoinositide 3-kinase) with TLR8 and this association is inhibited by tyrosine to phenylalanine mutation of either the YXXM or Box 1 motifs. As a further consequence of activation by 3M-003, TLR8 is modified to yield both higher and lower molecular mass species. These species include a monoubiquitinated form as deduced from ubiquitin peptide sequencing by HPLC/MS/MS (tandem MS).
منابع مشابه
Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines.
Among the 11 human TLRs, a subfamily TLR7, TLR8, and TLR9 display similarities in structure and endosomal localization. Natural agonists consisting of nucleic acids, such as ssRNA or DNA with CpG motifs, activate the innate immune cells through these TLRs. Immune response modifiers (IRMs) of imidazoquinoline class compounds 3M-001, 3M-002, and 3M-003 have been shown to activate the innate immun...
متن کاملUnique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells.
Newborns are prone to microbial infection and have poor memory responses to multiple antigens. We have previously shown that human neonatal blood monocytes exhibit impaired TNF-alpha responses to most known TLR agonists, including the pure TLR7 agonist imiquimod. Surprisingly, however, neonatal TNF-alpha responses to the imiquimod congener R-848 (TLR 7/8) were fully intact. We now show that TLR...
متن کاملCutting edge: activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides.
Synthetic immune response modifiers (IRM) such as imidazoquinolines can selectively activate human TLR7 or TLR8. Although these endosomal TLRs are close relatives, TLR7-deficient mice are unresponsive to TLR8 agonist IRMs. Similarly, natural ssRNA cannot activate murine TLR8, leading to the belief that murine TLR8 is nonfunctional. In this study, we transfected HEK293 cells with murine TLR8 and...
متن کاملThe Lcn2-engineered HEK-293 cells show senescence under stressful condition
Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC...
متن کاملInvestigating Anticancer Effects of Silver Nanoparticles on Bladder Cancer 5637 Cells in Comparison to Human Embryonic Kidney Normal Cells (HEK-293)
Background & aim: Nanotechnology is a modern research field with broad applications in cancer management. Among the various metal nanoparticles, silver nanoparticles (AgNPs) have been used in cancer therapy due to their promising anti-tumor properties. Despite the great advantages of AgNPs, their effects on normal cells have become a challenge. Besides, their anti-cancer effects have not previo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 409 1 شماره
صفحات -
تاریخ انتشار 2008